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Abstract

Based on the theory of elastic dynamics, the problem of wave localization in disordered periodic multi-
span rib-stiffened plates is investigated. The transfer matrix method is employed to obtain the transfer
matrix of the system, and the method for calculating the Lyapunov exponents in continuous dynamical
systems presented by Wolf is used to determine the localization factors in discrete dynamical systems. As
examples, the numerical results of the localization factors are given for a disordered periodic multi-span rib-
stiffened plate under axial compressive load. The effects of the degree of disorder of span length and
the structural parameters on the elastic wave localization are analyzed. The larger the degree of disorder,
the larger the degree of localization. The larger the dimensionless torsional and flexural rigidities of the rib,
the larger the degree of localization.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Plates are commonly used in many engineering applications such as airplanes, buildings,
bridges and ships. In order to enhance the ability of resisting axial instability and transverse
rigidity of plates, ribs are often added in them. If the ribs are added to them in period form, the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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plates became periodic rib-stiffened ones. In complete periodic rib-stiffened plates, waves can
propagate throughout all the structures. But disorder can lead to the appearance of localization of
elastic waves in mistuned periodic structures. Localization leads to a spatial decay of wave
amplitude, and the associated exponential decay constant is known as localization factor. So
localization factor characterizes the average exponential rates of decay of wave amplitudes in
disordered periodic structures. Up to now, many people have studied this problem [1–3].
Some people have studied the problem of static buckling mode localization in disordered

periodic rib-stiffened plates and shells under axial compressive load [4,5]. When rib-stiffened
plates and shells are subjected to transverse dynamical load, their motion equations are relevant to
the time and it is more difficult to solve the problem. Therefore, fewer people have investigated
localization of flexural waves in periodic rib-stiffened plates and shells.
Elishakoff et al. [6] studied the buckling mode localization in disordered two-span and three-

span rib-stiffened plates under axial compressive load using the method of model analysis. They
discovered that small span-length disorder of the plates could lead to the appearance of buckling
mode localization in the structures. Subsequently, they investigated the buckling mode
localization in multi-span rib-stiffened plates applying the method of finite difference [7]. They
considered the effects of span-length disorder and torsional stiffness of ribs on the localization
and discovered that the torsional stiffness of ribs remarkably influences the buckling mode
localization.
Xie [8] studied the static buckling mode localization in disordered periodic rib-stiffened plate

and presented the transfer matrix of structure and the formulation of localization factor. Using a
modified finite element method, Sridharan and Zeggane [9] analyzed the buckling mode
localization of rib-stiffened plates and shells and presented numerical results.
Based on the theory of elastic dynamics, localization of elastic waves in disordered periodic rib-

stiffened plates is studied. The method of transfer matrix is applied to obtain the transfer matrix
of the system. The method for calculating Lyapunov exponents in continuous dynamical systems
by Wolf [10] is used to determine them in discrete ones. The expression for computing the
localization factor of the system is further presented. As examples, the numerical results of
localization factors are given for disordered periodic multi-span rib-stiffened plates. The effects of
the disorder of span length and structural parameters on localization of elastic waves are
analyzed.
This paper is organized as follows. In Section 2, the wave motion equation and transfer matrix

of multi-span rib-stiffened plates are given. In Section 3, the formulation for calculating
localization factors of multi-coupled systems is presented. As examples, the numerical results of
localization factors for disordered periodic rib-stiffened plates are calculated and analyzed in
Section 4. The conclusions from this study are drawn in Section 5.
2. Wave motion equation and transfer matrix

The localization of elastic waves in a homogeneous periodic multi-span rib-stiffened plate as
shown in Fig. 1 is studied. There are n ribs and n+1 spans in the rib-stiffened plate. The local
coordinate of each span is depicted in Fig. 1. The rectangular plate is compressed in its middle
plane by forces uniformly distributed along the sides x1 ¼ 0 and xnþ1 ¼ anþ1: The magnitude of



ARTICLE IN PRESS

y

x1

a1

w

ai

xi
xi+1 

ai+1
an+1

xn+1 

o1
oi

on+1

b

1 i−1 i i+1 n
N

N

h
hr br

Fig. 1. Simply supported periodic rib-stiffened rectangular plate under axial compressive load.
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the compressive force per unit length of the edge is N. The boundary conditions of the plate are
assumed to be simply supported.
The equation of motion of flexural waves in plate uniformly compressed in x-direction can be

written as the following form [11]:

Dr2r2w þ N
q2w
qx2

þ rh
q2w
qt2

¼ q; (1)

where w(x, y, t) is the transverse displacement, D ¼ Eh3=12ð1� n2Þ the bending stiffness of plate,
E the Young’s modulus, n the Poisson ratio, r and h the density and the thickness of plate, N the
magnitude of compressive force per unit length of the edge in x-direction of plate, r2 ¼

q2
�
qx2 þ q2

�
qy2 the Laplacian operator, t the time and q the transverse load. Considering free

bending motion, q is fixed at zero.
Steady solution of elastic wave motion in plate is studied. According to the boundary

conditions of simple support on the edges y=0 and b, the transverse deflection of the plate can be
expressed as

w ¼ W ðxÞ sin
py

b
expð�iotÞ; (2)

where o is the circular frequency of elastic wave and b is the width of the plate in direction y.
Substituting Eq. (2) and q=0 into Eq. (1) leads to the following fourth-order linear ordinary
differential equation for W(x)

d4W

dx4
þ

N

D
�

2p2

b2

� �
d2W

dx2
þ

p4

b4
� k4

� �
W ¼ 0; (3)

where k ¼ ðrho2
�

DÞ
1=4

¼ 2p=l is the wavenumber, and l is the wavelength.
The eigenvalues of Eq. (3) are given by

r2 ¼
p2

b2
�

N

2D

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2D

N

2D
�

2p2

b2

� �
þ k4

s
: (4)

It is known that the critical buckling load Ncr for a simply supported compressed rectangular
plate is [11,12]

Ncr ¼ 4p2D=b2: (5)
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In the present study, the case that the rectangular plate does not buckle is considered. So the
axial compressive load N satisfies the following condition:

0pNpNcr: (6)

In order to investigate the localization of elastic waves, at least one pair of opposite propagating
waves are taken into account. When there are one pair of propagating waves and one pair of
attenuating waves in the plate, the solutions of Eq. (4) can be expressed as

r1;3 ¼ �a1; r2;4 ¼ a2 � ib2: (7a)

For the case of two pairs of propagating waves in the plate, the solutions of Eq. (4) can be
written as

r1;3 ¼ a1 � ib1; r2;4 ¼ a2 � ib2; (7b)

where i ¼
ffiffiffiffiffiffiffi
�1

p
: The real and imaginary parts of Eqs. (7a) and (7b) satisfy the following

conditions:

aip0; biX0; ði ¼ 1; 2Þ: (8)

So, the general solution of Eq. (3) is given by

W ðxÞ ¼ A exp ðr1xÞ þ B exp ðr2xÞ þ C exp ðr3xÞ þ D exp ðr4xÞ; (9)

where A, B, C and D are unknown coefficients to be determined by the continuity and the
boundary conditions.
For a typical span i, i ¼ 1;2,y,n+1, the transverse deflection can be written as

wiðxi; yÞ ¼ ½Ai expðr1xÞ þ Bi exp ðr2xÞ þ Ci exp ðr3xÞ þ Di exp ðr4xÞ
 sin
py

b
exp ð�iotÞ; (10)

where Ai, Bi, Ci and Di are coefficients to be determined by the continuity and the boundary
conditions.
The continuity conditions between the two typical neighboring spans i and i+1 are given by

wijxi¼ai
¼ wiþ1

��
xiþ1¼0

; (11a)

qwi

qxi

����
xi¼ai

¼
qwiþ1

qxiþ1

����
xiþ1¼0

; (11b)

M ðiþ1Þ
x

��
xiþ1¼0

� M ðiÞ
x

��
xi¼ai

¼ GrJr
q3wiþ1

qxiþ1qy2

����
xiþ1¼0

þ rrJr
q2

qt2
qwiþ1

qxiþ1

� �����
xiþ1¼0

; (11c)

V ðiþ1Þ
x

��
xiþ1¼0

� V ðiÞ
x

��
xi¼ai

¼ ErIr
q4wiþ1

qy4

����
xiþ1¼0

þrrAr
q2wiþ1

qt2

����
xiþ1¼0

; (11d)

where GrJr and ErIr are the torsional and flexural rigidities of the ribs, respectively, rrJr the
moment of inertia per unit length of the ribs, rr the density of the ribs and Ar the cross-sectional
area of the ribs. M ðiÞ

x and V ðiÞ
x are the bending moment and shear force in span i, and they can be
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expressed as

M ðiÞ
x ¼ �D

q2wi

qx2
i

þ n
q2wi

qy2

� �
; (12a)

V ðiÞ
x ¼ �D

q3wi

qx3
i

þ ð2� nÞ
q3wi

qxi qy2

� �
: (12b)

Substituting Eqs. (12a) and (12b) into Eqs. (11c) and (11d) leads to the following expressions:

�
q2wiþ1

qx2
iþ1

þ n
q2wiþ1

qy2

 !�����
xiþ1¼0

þ
q2wi

qx2
i

þ n
q2wi

qy2

� �����
xi¼ai

¼
GrJr

D

q3wiþ1

qxiþ1 qy2

����
xiþ1¼0

þ
rrJr

D

q2

qt2
qwiþ1

qxiþ1

� �����
xiþ1¼0

; ð13aÞ

�
q3wiþ1

qx3
iþ1

þ ð2� nÞ
q3wiþ1

qxiþ1 qy2

" #�����
xiþ1¼0

þ
q3wi

qx3
i

þ ð2� nÞ
q3wi

qxi qy2

� �����
xi¼ai

¼
ErIr

D

q4wiþ1

qy4

����
xiþ1¼0

þ
rrAr

D

q2wiþ1

qt2

����
xiþ1¼0

: ð13bÞ

Substituting Eq. (10) into Eqs. (11a), (11b), (13a) and (13b), one can get the following
formulations:

Ai expðr1aiÞ þ Bi expðr2aiÞ þ Ci expðr3aiÞ þ Di expðr4aiÞ � Aiþ1 � Biþ1 � Ciþ1 � Diþ1 ¼ 0; (14a)

Air1 expðr1aiÞ þ Bir2 expðr2aiÞ þ Cir3 expðr3aiÞ þ Dir4 expðr4aiÞ

� Aiþ1r1 � Biþ1r2 � Ciþ1r3 � Diþ1r4 ¼ 0; ð14bÞ

Aip1 expðr1aiÞ þ Bip2 expðr2aiÞ þ Cip3 expðr3aiÞ þ Dip4 expðr4aiÞ

þ Aiþ1x1 þ Biþ1x2 þ Ciþ1x3 þ Diþ1x4 ¼ 0; ð14cÞ

Air1q1 expðr1aiÞ þ Bir2q2 expðr2aiÞ þ Cir3q3 expðr3aiÞ þ Dir4q4 expðr4aiÞ

þ Aiþ1z1 þ Biþ1z2 þ Ciþ1z3 þ Diþ1z4 ¼ 0; ð14dÞ

where

pi ¼ r2i � nðp=bÞ2; qi ¼ r2i � ð2� nÞðp=bÞ2;

xi ¼ ðGrJrri=DÞðp=bÞ2 � r2i þ nðp=bÞ2 þ rrJro2ri=D;

zi ¼ ð�ErIr=DÞðp=bÞ4 � r3i þ ð2� nÞriðp=bÞ2 þ rrAro2=D:

The following dimensionless quantities are introduced:

âi ¼ pai=b; k̂ ¼ bk=p; ĥ ¼ h=b; ĥr ¼ hr=b; b̂r ¼ br=b; (15)
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where âi; k̂; ĥ; ĥr and b̂r are the dimensionless span length, wavenumber, thickness of plate,
thickness of rib and width of rib. Then the following non-dimensional quantities are employed:

N̂ ¼
Nb2

p2D
¼

12ð1� n2Þ

p2ĥ
2

s
E


 �
; r̂2 ¼

b

p

� �2

r2 ¼ 1�
N̂

2

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂

2

N̂

2
� 2

 !
þ k̂

4

vuut ;

Êr ¼
pErIr

bD
¼ pð1� n2Þĥr

b̂r

ĥ

 !3
Er

E

� �
; Ĝr ¼

pGrJr

bD
¼

pð1� n2Þ
2ð1þ nrÞ

b̂r

ĥrðĥ
2

r þ b̂
2

r Þ

ĥ
3

Er

E

� �
;

ôr1 ¼
brrJro2

pD
¼ p3

ĥrb̂rðĥ
2

r þ b̂
2

r Þ

12ĥ

rr

r

� �
k̂
4
; ôr2 ¼

b3rrAro2

p3D
¼ p

ĥrb̂r

ĥ

rr

r

� �
k̂
4
; ð16Þ

where s is the axial compressive stress of the plate, nr the Poisson ratio of the ribs, Êr and Ĝr the
dimensionless flexural and torsional rigidities of the ribs, respectively.
Substituting Eqs. (15) and (16) into Eqs. (14a)–(14d) leads to the following dimensionless

expressions:

Ai expðr̂1âiÞ þ Bi expðr̂2âiÞ þ Ci expðr̂3âiÞ þ Di expðr̂4âiÞ � Aiþ1 � Biþ1 � Ciþ1 � Diþ1 ¼ 0; (17a)

Air̂1 expðr̂1âiÞ þ Bir̂2 expðr̂2âiÞ þ Cir̂3 expðr̂3âiÞ þ Dir̂4 expðr̂4âiÞ

� Aiþ1r̂1 � Biþ1r̂2 � Ciþ1r̂3 � Diþ1r̂4 ¼ 0; ð17bÞ

Aip̂1 expðr̂1âiÞ þ Bip̂2 expðr̂2âiÞ þ Cip̂3 expðr̂3âiÞ þ Dip̂4 exp ðr̂4âiÞ

þ Aiþ1x̂1 þ Biþ1x̂2 þ Ciþ1x̂3 þ Diþ1x̂4 ¼ 0; ð17cÞ

Air̂1q̂1 expðr̂1âiÞ þ Bir̂2q̂2 expðr̂2âiÞ þ Cir̂3q̂3 expðr̂3âiÞ þ Dir̂4q̂4 expðr̂4âiÞ

þ Aiþ1ẑ1 þ Biþ1ẑ2 þ Ciþ1ẑ3 þ Diþ1ẑ4 ¼ 0; ð17dÞ

where p̂i ¼ r̂2i � n; q̂i ¼ r̂2i � ð2� nÞ; x̂i ¼ Ĝrr̂i � r̂2i þ nþ ôr1r̂i; ẑi ¼ �Êr � r̂3i þ ð2� nÞr̂i þ ôr2:
Solving Eqs. (17a)–(17d) for Ai+1, Bi+1, Ci+1 and Di+1 in terms of Ai, Bi, Ci and Di results in

matrix equation

viþ1 ¼ Tivi; (18)

where vi ¼ fAi;Bi;Ci;Dig
Tis the state vector of the ith span and Ti is the 4� 4 transfer matrix, the

elements of which are given by

T11 ¼
½Êr � r̂31 � r̂3r̂4ðr̂1 � r̂2Þ � r̂1r̂2ðr̂3 þ r̂4Þ þ r̂1ðr̂1 þ Ĝr þ ôr1Þðr̂2 þ r̂3 þ r̂4Þ � ôr2
 expðr̂1âiÞ

ðr̂2 � r̂1Þðr̂1 � r̂3Þðr̂1 � r̂4Þ
;

T12 ¼
½Êr þ ðĜr þ ôr1Þr̂2ðr̂2 þ r̂3 þ r̂4Þ � ôr2
 expðr̂2âiÞ

ðr̂2 � r̂1Þðr̂1 � r̂3Þðr̂1 � r̂4Þ
;
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T13 ¼
½Êr þ ðĜr þ ôr1Þr̂3ðr̂2 þ r̂3 þ r̂4Þ � ôr2
 expðr̂3âiÞ

ðr̂2 � r̂1Þðr̂1 � r̂3Þðr̂1 � r̂4Þ
;

T14 ¼
½Êr þ ðĜr þ ôr1Þr̂4ðr̂2 þ r̂3 þ r̂4Þ � ôr2
 expðr̂4âiÞ

ðr̂2 � r̂1Þðr̂1 � r̂3Þðr̂1 � r̂4Þ
;

T21 ¼
½Êr þ ðĜr þ ôr1Þr̂1ðr̂1 þ r̂3 þ r̂4Þ � ôr2
 expðr̂1âiÞ

ðr̂1 � r̂2Þðr̂2 � r̂3Þðr̂2 � r̂4Þ
;

T22 ¼
½Êr � r̂32 � r̂3r̂4ðr̂2 � r̂1Þ � r̂1r̂2ðr̂3 þ r̂4Þ þ r̂2ðr̂1 þ r̂3 þ r̂4Þðr̂2 þ Ĝr þ ôr1Þ � ôr2
 expðr̂2âiÞ

ðr̂1 � r̂2Þðr̂2 � r̂3Þðr̂2 � r̂4Þ
;

T23 ¼
½Êr þ ðĜr þ ôr1Þr̂3ðr̂1 þ r̂3 þ r̂4Þ � ôr2
 expðr̂3âiÞ

ðr̂1 � r̂2Þðr̂2 � r̂3Þðr̂2 � r̂4Þ
;

T24 ¼
½Êr þ ðĜr þ ôr1Þr̂4ðr̂1 þ r̂3 þ r̂4Þ � ôr2
 expðr̂4âiÞ

ðr̂1 � r̂2Þðr̂2 � r̂3Þðr̂2 � r̂4Þ
;

T31 ¼
½Êr þ ðĜr þ ôr1Þr̂1ðr̂1 þ r̂2 þ r̂4Þ � ôr2
 expðr̂1âiÞ

ðr̂1 � r̂3Þðr̂3 � r̂2Þðr̂3 � r̂4Þ
;

T32 ¼
½Êr þ ðĜr þ ôr1Þr̂2ðr̂1 þ r̂2 þ r̂4Þ � ôr2
 expðr̂2âiÞ

ðr̂1 � r̂3Þðr̂3 � r̂2Þðr̂3 � r̂4Þ
;

T33 ¼
½Êr � r̂33 � r̂3r̂4ðr̂1 þ r̂2Þ � r̂1r̂2ðr̂3 � r̂4Þ þ r̂3ðr̂1 þ r̂2 þ r̂4Þðr̂3 þ Ĝr þ ôr1Þ � ôr2
 expðr̂3âiÞ

ðr̂1 � r̂3Þðr̂3 � r̂2Þðr̂3 � r̂4Þ
;

T34 ¼
½Êr þ ðĜr þ ôr1Þr̂4ðr̂1 þ r̂2 þ r̂4Þ � ôr2
 expðr̂4âiÞ

ðr̂1 � r̂3Þðr̂3 � r̂2Þðr̂3 � r̂4Þ
;

T41 ¼
½Êr þ ðĜr þ ôr1Þr̂1ðr̂1 þ r̂2 þ r̂3Þ � ôr2
 expðr̂1âiÞ

ðr̂1 � r̂4Þðr̂4 � r̂2Þðr̂4 � r̂3Þ
;

T42 ¼
½Êr þ ðĜr þ ôr1Þr̂2ðr̂1 þ r̂2 þ r̂3Þ � ôr2
 expðr̂2âiÞ

ðr̂1 � r̂4Þðr̂4 � r̂2Þðr̂4 � r̂3Þ
;

T43 ¼
½Êr þ ðĜr þ ôr1Þr̂3ðr̂1 þ r̂2 þ r̂3Þ � ôr2
 expðr̂3âiÞ

ðr̂1 � r̂4Þðr̂4 � r̂2Þðr̂4 � r̂3Þ
;

T44 ¼
½Êr � r̂34 � r̂3r̂4ðr̂1 þ r̂2Þ þ r̂1r̂2ðr̂3 � r̂4Þ þ r̂4ðr̂1 þ r̂2 þ r̂3Þðr̂4 þ Ĝr þ ôr1Þ � ôr2
 expðr̂4âiÞ

ðr̂1 � r̂4Þðr̂4 � r̂2Þðr̂4 � r̂3Þ
:

In Eq. (18), the state vector vi+1, which is a measure of the transverse deflection of the (i+1)th
span, is related to that at the ith span through the transfer matrix Ti. Beginning from the first span
and iteratively employing Eq. (18), it can be seen that the state vector of the (i+1)th span is
related to that of the first span by a product of transfer matrices

vnþ1 ¼ Cnv1; (19)

where Cn ¼ TnTn�1 � � �T1 is the total transfer matrix.
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3. Localization of elastic waves

Lyapunov exponent measures the average exponential rate of convergence or divergence
between two neighboring phase orbits in phase space and qualitatively and quantitatively
describes the dynamical characters of chaos systems. When studying elastic wave localization
in periodic structures, by employing the concept of Lyapunov exponent, one can get a measur-
able index about the rate of decay of wave amplitudes. According to the symmetry of
periodic structures, it can be proved that Lyapunov exponents always occur in pairs, i.e. if li is a
Lyapunov exponent then �li is also a Lyapunov exponent [1,2]. Therefore, for 2m� 2m transfer
matrices, the m pairs of Lyapunov exponents have the following property,
l1Xl2X � � �XlmXlmþ1ð¼ 2lmÞXlmþ2ð¼ 2lm�1ÞX � � �Xl2mð¼ 2l1Þ:
Localization factor is used to characterize the average exponential rate of decay of wave

amplitudes. It is defined by the smallest positive Lyapunov lm. Since lm represents the wave which
has the least amount of decay and transmits energy farther along the structure than any other
waves. So, it characterizes the main decay behavior of elastic waves.
In this paper, the algorithm for calculating Lyapunov exponents for continuous dynamical

system due to Wolf [10] is applied to calculate the Lyapunov exponents for the discrete dynamical
system, Eq. (18). Assuming the dimension of the transfer matrices is 2m� 2m. In order to
calculate the kth Lyapunov exponent, 1pkp2m, k orthogonal unit vectors u

ð1Þ
1 ; uð2Þ1 ; . . . ; uðkÞ1 whose

dimension is 2m are chosen as the initial state vectors. Eq. (18) is used to compute the state vectors
iteratively. At the lth iteration, v

ðjÞ
lþ1 ¼ Tlu

ðjÞ
l (l ¼ 1;2,y; j ¼ 1;2,y,k). The Gram–Schmidt

orthonormalization procedure is now applied

v̂
ð1Þ
lþ1 ¼ v

ð1Þ
lþ1; u

ð1Þ
lþ1 ¼

v̂
ð1Þ

lþ1

v̂
ð1Þ

lþ1

�� �� ;
v̂
ð2Þ
lþ1 ¼ v

ð2Þ
lþ1 � ðv

ð2Þ
lþ1; u

ð1Þ
lþ1Þu

ð1Þ
lþ1; u

ð2Þ
lþ1 ¼

v̂
ð2Þ

lþ1

v̂
ð2Þ

lþ1

�� �� ;
..
.

v̂
ðkÞ
lþ1 ¼ v

ðkÞ
lþ1 � ðv

ðkÞ
lþ1; u

ðk�1Þ
lþ1 Þu

ðk�1Þ
lþ1 � � � � � ðv

ðkÞ
lþ1; u

ð1Þ
lþ1Þu

ð1Þ
lþ1; u

ðkÞ
lþ1 ¼

v̂
ðkÞ

lþ1

v̂
ðkÞ

lþ1

�� �� :
After the k orthonormal unit vectors, u

ð1Þ
l ; uð2Þ

l ; . . . ; uðkÞl ; operated by transfer matrix Tl and
orthonormalized by Gram–Schmidt procedure, the volume of a k-dimensional hypersphere is
jjv̂

ð1Þ
lþ1jj � jjv̂

ð2Þ
lþ1jj � � � jjv̂

ðkÞ
lþ1jj ¼

Qk
j¼1jjv̂

ðjÞ
lþ1jj: Hence, after the initial vectors, u

ð1Þ
1 ; uð2Þ

1 ; . . . ; uðkÞ1 ; operated
by a product of transfer matrices, TnTn�1 � � �T1; the volume of a k-dimensional hypersphere
becomes

V ¼
Yn

l¼1

Yk

j¼1

v̂
ðjÞ
lþ1

��� ���
 !

: (20)

For an n-dimensional dynamical system in phase space, a k-dimensional volume defined by the
k principal axes evolves on the average as exp½ðl1 þ l2 þ � � � þ lkÞn
; where l1; l2; . . . ; lk are the k

Lyapunov exponents. Hence, combined with Eq. (20), the expression for determining the kth
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Lyapunov exponent is derived as

lk ¼ lim
n!1

1

n

Xn

l¼1

ln v̂
ðkÞ
lþ1

��� ���: (21)

By means of the above expression, each of the m pairs of contrary Lyapunov exponents can be
calculated. The mth Lyapunov exponent lm is the localization factor. Then it is implied that
the wave amplitudes decay at the magnitude exp ð�lmÞ when they propagate through each span of
the multi-span rib-stiffened plate. For this study, the dimensions of the transfer matrix Ti for the
multi-span plate are 4� 4. So, the second Lyapunov exponent l2 is the localization factor.
4. Example and discussions

As example, the localization of elastic wave in a periodic rib-stiffened multi-span plate is
studied. The material property is considered to be same, i.e. E ¼ Er and r ¼ rr: The span length ai

(i ¼ 1; 2; . . . ; n þ 1) is assumed to be a uniformly distributed random variable with mean a

and coefficient of variation d; namely, ai is a uniformly distributed random number between
½að1�

ffiffiffi
3

p
dÞ; að1þ

ffiffiffi
3

p
dÞ
: Hence, if zi is a standard uniformly distributed random variable,

i.e. zi 2 ð0; 1Þ; then ai can be written as

ai ¼ a½1þ
ffiffiffi
3

p
dð2zi � 1Þ
: (22)

In the present research, four values of the coefficient of variation of the random span length are
considered, i.e. d ¼ 0; 0.02, 0.05 and 0.1. The case d ¼ 0 corresponds to the ordered periodic plate,
namely, there is no misplacement in the ribs.
For the case of ĥr ¼ ĥ ¼ 1=20; b̂r ¼ 1=4; Figs. 2(a)–(d) display the variation of localization

factors versus dimensionless wavenumber k̂ for N̂ ¼ 1:0; 2:0; 3:0 and 4.0. For N̂ ¼ 2:0; ĥr ¼ 1=40;
b̂r ¼ 1=4; the localization factors versus dimensionless wavenumber are plotted in Fig. 3 for the
case of ĥ ¼ 1=20 and 1/40. For N̂ ¼ 0:2; ĥ ¼ 1=20; b̂r ¼ 1=4; Fig. 4 displays the variation of
localization factors versus non-dimensional wavenumber k̂ for ĥr ¼ h=2 and ĥr ¼ ĥ: As N̂ ¼ 0:2;
ĥ ¼ 1=20 and ĥr ¼ ĥ; the curves of localization factors versus non-dimensional wavenumber k̂ at
different b̂r are shown in Fig. 5. For ĥ ¼ 1=40; ĥr ¼ ĥ; b̂r ¼ 1=4; the localization factors versus
dimensionless axial compressive force are shown in Fig. 6 for the case of k̂ ¼ 2:0; 3.0, 4.0 and 5.0.
The discussions are as follows:
1.
 From Figs. 2–5, it can be seen that tuned periodic multi-span rib-stiffened plates have the
properties of frequency passband and stopband and localization phenomenon can occur in
mistuned periodic multi-span plates. For example, in Fig. 2(a) the values of curve 1 are zero at
interval k̂ 2 ð4:7; 5:4Þ: This interval is known as passband. And at this interval, the values in
curves 2, 3 and 4 are bigger than zero and the incident elastic waves are localized. The values of
curve 1 are bigger than zero at interval k̂ 2 ð5:4; 6:9Þ: And this interval is called as stopband.
2.
 Due to the influence of axial compressive force N, one can observe from Figs. 2(a)–(d) that the
intervals of dimensionless wavenumber k̂ for propagating waves that satisfy Eqs. (7a) and (7b)
are different for different non-dimensional axial force N̂: When 0pN̂p2:0; the interval of
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Fig. 2. Localization factors in rib-stiffened plates versus non-dimensional wavenumber ðĥ ¼ 1=20; ĥr ¼ ĥ; b̂r ¼ 1=4Þ:

Fig. 3. Localization factors in rib-stiffened plates versus non-dimensional wavenumber ðN̂ ¼ 2:0; ĥr ¼ 1=40; b̂r ¼

1=4Þ:
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dimensionless wavenumber is k̂X1:0: When 2:0oN̂p4:0; k̂ can get values at interval (0, 1) and
the range of k̂ at this interval increases with the increase of N̂:
3.
 With the decrease of the dimensionless thickness of the plate, it can be observed from
Fig. 3 that the localization is stronger in lower frequency regions and there are less changes in
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Fig. 4. (a, b) Localization factors in rib-stiffened plates versus non-dimensional wavenumber ðN̂ ¼ 0:2; ĥ ¼

1=20; b̂r ¼ 1=4Þ:

Fig. 5. (a, b) Localization factors in rib-stiffened plates versus non-dimensional wavenumber ðN̂ ¼ 0:2; ĥ ¼

1=20; ĥr ¼ ĥÞ:
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higher-frequency regions. For example, in Fig. 3(a) the interval of k̂ 2 ð1:0; 1:6Þ is stopband
for ĥ ¼ 1=20: But this interval will increase to k̂ 2 ð1:0; 2:2Þ when ĥ decreases to ĥ ¼ 1=40 in
Fig. 3(b) and the degree of localization is strengthened.
4.
 With the increase of the dimensionless thickness of the rib, Fig. 4 shows that localization
factors will be increased for a certain non-dimensional wavenumber and the passband and the
stopband will become narrower and wider, respectively. Hence, the degree of localization will
be increased. For example, the frequency passband k̂ 2 ð6:8; 7:5Þ will be decreased to k̂ 2

ð6:95; 7:30Þ and the stopband k̂ 2 ð5:7; 6:8Þ will be increased to k̂ 2 ð5:4; 6:95Þ when the
dimensionless thickness of the rib is increased from ĥ=2 to ĥ: The reason is that with the
increase of the dimensionless thickness ĥr of the rib the dimensionless torsional and flexural
rigidities will also be increased, respectively.
5.
 With the increase of the dimensionless width of the rib, Fig. 5 shows that localization factors
will be increased for a certain non-dimensional wavenumber and the passband and the
stopband will become narrower and wider, respectively. Hence, the degree of localization will
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Fig. 6. (a)–(d) Localization factors in rib-stiffened plates versus non-dimensional wavenumber ðĥ ¼ 1=40; ĥr ¼

ĥ; b̂r ¼ 1=4Þ:
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be increased. For example, the frequency passband k̂ 2 ð2:3; 3:8Þ will be decreased to k̂ 2

ð2:7; 3:7Þ and the stopband k̂ 2 ð3:8; 4:3Þ will be increased to k̂ 2 ð3:7; 4:8Þ when the
dimensionless width of the rib is increased from 1

8
to 1

4
: The reason is that with the increase

of the dimensionless width b̂r of the rib the dimensionless torsional and flexural rigidities will
also be increased, respectively.
6.
 For different dimensionless wavenumber, it can be seen in Fig. 6 that the variation of
localization factors versus dimensionless axial compressive force is very different. For example,
for k̂ ¼ 2:0 the interval N̂ 2 ð0; 4Þ for dimensionless axial compressive force is stopband. But for
k̂ ¼ 3:0; this interval will become passband. So, when designing the dynamical intensity of a
periodic structure, the dynamical analysis should be performed according to actual structural
dynamical status, but the standards of static intensity design should not be completely applied.
5. Conclusions

In this study, the localization of elastic waves in disordered periodic multi-span rib-stiffened
plates is studied using the method of transfer matrix. The method for calculating the Lyapunov
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exponents in continuous dynamical systems presented by Wolf is employed to determine the
localization factors in discrete dynamical systems. The main findings of this work are as follows:
1.
 Tuned periodic multi-span rib-stiffened plates have the properties of frequency passband and
stopband. Localization phenomenon can occur in mistuned periodic multi-span plates, and the
larger the degree of disorder, the larger the degree of localization.
2.
 With the increase of the dimensionless torsional and flexural rigidities of the rib, the passband
and the stopband will become narrower and wider, respectively. So, the degree of localization
will be increased.
3.
 For different dimensionless wavenumber, the variation of the localization factor versus the
dimensionless axial compressive force is very complicated, and it is necessary to study the
problem of wave localization according to the actual structural dynamical status.
4.
 Applying these properties of periodic structures, disordered periodic structures can be designed
according to different purposes to localize the amplitudes of elastic waves and vibration, to
reduce the vibration of important substructures and to realize the structural vibration control.
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